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Abstract. Non-equilibrium temperature is defined independently of the characteristics of 
any particular substance. The relation defining absolute non-equilibrium temperature is 
shown to be similar to the definition of absolute equilibrium temperature proposed by 
Kelvin. No 4 priori empirical non-equilibrium temperature is introduced. Moreover, for 
the particular case of an elastic body, an unique non-equilibrium entropy is shown to exist. 

1. Introduction 

Recently, increasing attention has been paid to the problem of defining a non- 
equilibrium entropy and a non-equilibrium temperature (Meixner 1966a, b, 1968, 
1970, De Groot and Mazur 1962, Stuart et al 19'70, Truesdell 1968, Muller 1971a, b, 
Green and Laws 1972). 

It has long been recognized that physical concepts must be defined independently of 
a particular substance. Thus although a device often used to measure force is a spring, 
one cannot use such a device to define force. 

Similarly Kelvin, see Zemanski (1957), recognized that a thermometer cannot be 
used to define temperature. This led him to define equilibrium temperature by means 
of a Carnot engine, the measurement being independent of a particular substance. 

In § 2, it is shown that by means of a somewhat modified Carnot engine, absolute 
non-equilibrium temperature can be defined. Kelvin's demonstration is based on the 
assumption that no entropy production occurs in the body whose temperature is to be 
determined. In the present work this restriction is relaxed. 

In Q 3, it is shown that a unique non-equilibrium entropy exists for an elastic body. 

2. The non-equilibrium temperature 

For simplicity, we limit the following considerations to heat conduction only; thus no 
displacements occur. The extension to thermoelasticity in which displacements take 
place or to a fluid is straightforward. 

Consider an isolated system which may consist of a number of interacting bodies in 
diathermal contact. The isolated system could, for example, be composed of a number 
of rigid bodies with different temperatures. Henceforth we shall refer to the isolated 
system as the body. The object is to determine the instantaneous non-equilibrium 
temperature at any point of the body. 
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80 J Lambermont and G Lebon 

The analysis is based on the assumption that locally, the rate of change of entropy 
per unit volume s, is given by 

where U, is the internal energy per unit volume, and a ' ,  . . . , a p  are other independent 
variables which we do not need to know explicitly for the purpose of this work; 8 and the 
p i  are functions of some or all the independent variables; a superscript dot means the 
derivative with respect to the time. 

The definition (2.1) of S, is more general than the commonly used expression based 
on the local equilibrium hypothesis. According to that theory the a' would not be 
present in the case of heat conduction. Following Bataille and Kestin (1975), Atkin eta1 
(1975), Lebon and Lambermont (1976), and others, the entropy outside equilibrium 
may depend, not only on U,, but also on other state variables, such as the heat flux 
vector. 

On the other hand, Meixner (1966a, b) assumes that in general (2.1) is not 
integrable, i.e. there does not exist an unique function between s,, U, and the a'. But, as 
can be easily checked, this has no consequences in the present analysis leading to the 
non-equilibrium temperature definition (2.23), because the integrated form of (2.1) is 
not needed in that part of the analysis. 

The purpose of this section is to identify 8 with the non-equilibrium temperature. To 
do this we proceed to show that as a consequence (2.1) an absolute temperature scale 
exists which is independent of a particular substance. 

The first law reads locally 

U, = -div q, (2.2) 

where q is the heat flux vector. 
Combining (2.1) and (2.2) yields 

P S., =-div-+q.gradK'+  4 1 p'&' 
e r = l  

As the entropy is an extensive quantity we can always write a balance equation for it 
when an entropy flux vector Js is introduced: 

S, = -div Js +a, (2.4) 

a is the production of entropy per unit volume. The second law expresses the fact that 

a 2 O .  (2.5) 
The entropy balance relation (2.4) differs from the Clausius-Duhem inequality 

because we do not accept, at this point, that Js is the heat flux vector divided by the 
temperature. 

Comparing (2.3) and (2.4) identifies Js  and a as 

J~ = q/e  

and 

u=q.gradO- '+  'f 
i = l  
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As is well known, Kelvin defined equilibrium temperature by considering a Carnot 
engine which subtracts heat reversibly from the body whose temperature is to be 
determined. During the cycle the energy is partly converted into work, the remaining 
part being rejected to a reference temperature reservoir. 

To define an absolute non-equilibrium temperature scale, subtract during a time 
interval At,, by means of an engine (see figure l), a small quantity of heat AQ1 from the 
body at the location where the temperature is to be determined. Unlike Kelvin we 
cannot employ a Carnot engine because during the contact time At, that the heat is 
subtracted, the temperature may be varying rapidly in the body. Consequently an 
irreversible process will generally be set up in the engine. During the irreversible 
non-isothermal process path A-B, shown in figure 2, the engine absorbs heat AQ1 
continuously (6, < 0) from the body. At B the engine is uncoupled. The rest of the 
cycle is selected to correspond with a Carnot cycle. 

‘Work  

Rgure 1. 
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Figure 2. 
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During this reversible part of the cycle, the engine delivers an amount of work A W 
and exchanges an amount of heat AQZ with the reservoir at, say, the triple point of water zq; AQ is counted as positive when heat is absorbed by the body or the reservoir. 
Therefore, AQ1 is negative, because heat is rejected by the body while AQ2 > 0 when 
heat flows into the heat reservoir. With Kelvin, we select the reference equilibrium 
temperature to be Zq = 273.16 K. 

In Kelvin’s (formal) experiment, the state of the engine at the initial contact with the 
body, corresponding with point A in figure 2, is such that thermal equilibrium exists 
with the body whose temperature is to be determined. 

Similarly we suppose that the equilibrium state of the engine at point A is such that 
the entropy production in the engine is, during the subsequential process, a continuous 
function of the time. 

As the entropy change of the motor taken through the cycle is zero, the rate of 
entropy change of the whole system consisting of the body, the engine and the reservoir 
in the cycle time At  is 

AS = A S b d y  + Asreservoir. (2.8) 

The change of entropy of the system is necessarily equal to the entropy production in 
it. As there is no entropy production in the reservoir, it follows that for the cycle 

where gB and aE are the entropy production per unit volume respectively inside the 
body with volume VB and inside the motor with volume V,. 

In what follows use is made of the well established definition of equilibrium entropy 
and equilibrium temperature as defined by Kelvin. 

The exchange of the heat quantity AQz to the reservoir at the triple point Gq is 
reversible and is therefore given by 

The entropy change of the body is 

/ S, dVdt .  
A r  VB 

(2.10) 

(2.1 1) 

As explained before, the body stands for a number of interacting bodies whose 
physical natures may differ. In that case the first integral in (2.9) is understood to stand 
for the sum over all interacting bodies: 

where V,  is the volume and 0; the entropy source strength of the ith body. Also (2.1 1) is 
understood to stand for a similar sum. For simplicity of notation those sums are not 
written out explicitly in the subsequent analysis. 

Replacing (2.9), (2.10) and (2.11) in (2.8) yields 

A 0 2  S, dt dV+- 
273.16’ 

(2.12) 
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Substitution of (2.3) and (2.7) into (2.12) results in 

(TE d V dt. 4 AQz div - d V dt +-- 
273.16 /Atc /vE 

Making use of Gauss' theorem, the first term can be written as: 

4 
/At /V- div - 8 d V  dt = /Atc /AsE YdA dl 

(2.13) 

(2.14) 

where AB-E denotes the small contact surface between the body and engine, n is the 
outer normal to the body. No other contribution appears in (2.14) because the body is 
adiabatically isolated except for the contact point with the engine to which it is 
connected during the contact time interval At,. 

Combining (2.13) and (2.14) results in: 

(2.15) 

Making use of the definition of the mean, we obtain for the left-hand side of (2.15), 
since heat is subtracted continuously (4. n >O) during the path A-B (figure 2): 

where 

#= O ( t o + c r  At,) O < f f < l  (2.17) 

is the mean of 0 over the contact time interval At,= t , - to and AQ1 is the heat 
subtracted by the engine in that time interval. 

The expression (2.15) can be derived more straightforwardly from the condition 
that the entropy change of the engine for the whole cycle is zero: 

AS,=/  / S,EdVdt=O 
At VE 

where At is the cycle time. 
According to (2.4) the entropy balance equation for the motor is given by 

(2.18) 

(2.19) 4 
0 

Sv,€ = -div - + uE. 

Substituting (2.19) into (2.18) results in 

0 = - j  / div;dVdt+lAtc jVE a E d V d t  
AI VE 

or, by Gauss' theorem 

(2.20) 

(2.21) 
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The expression on the left-hand side is zero except during the interval of time the 
engine is in contact with the body and during the time interval when heat is exchanged 
reversibly with the reference temperature reservoir. When it is assumed that for the 
latter reversible part of the cycle, 6 reduces to the equilibrium temperature, (2.21) is 
seen to reduce to (2.15). The more elaborate derivation of (2.15) presented above 
avoids this assumption. 

Substitution of (2.16) into (2.15) yields an expression for &in terms of AQ2 and gE. 

We observe from (2.17) that the smaller Atc becomes, the closer &approaches the value 
of 6. As will be shown later, for sufficiently small At, the following condition holds: 

(2.22) 

Using (2.22) in (2.15) and substitution of (2.16) results in the following expression for e, 
valid for small Atc: 

(2.23) 

6 is seen to depend only on the heat fluxes exchanged by the engine. As this is an 
independent measurement and as 8 clearly has the dimension of a temperature, it is 
justified to call it the non-equilibrium temperature. The quantity 8 has been defined 
whatever the nature of the working substance of the engine; it is clearly independent of 
the numerical values assigned to an empirical temperature scale. 

Since AQ1 is negative, AQZ is necessarily positive as follows from the Planck-Kelvin 
statement of the second law which states: ‘It is impossible to construct an engine that, 
operating in a cycle, will produce no effect other than the extraction of heat from a 
reservoir and the performance of an equivalent amount of work’. Thus the absolute 
non-equilibrium temperature defined by (2.23) is non-negative. 

The expression (2.23) is seen to be identical to Kelvin’s definition of equilibrium 
temperature (Zemanski 1957). We have thus proved that an experiment similar to that 
proposed by Kelvin to define equilibrium temperature can be used to define non- 
equilibrium temperature. 

If the relation (2.1) is integrable, i.e. if a unique entropy exists, it follows from (2.1) 
that 

(2.24) s, = s,(u,, 2, . . . , d )  

and that 

as,/ =- 1 -1 as, = P I .  

au, el 8’ a d  U” 
(2.25) 

The non-equilibrium temperature follows then in the same way as in thermostatics, the 
important problem remains of course the determination of the physical nature of the 
parameters ai. 

Proof of the relation (2.22) 
Just as for the body, we do not assume that during the irreversible process occurring in 
the engine the local equilibrium hypothesis is valid. The expression for the entropy 
source strength in the engine, uE, will therefore be of the form (2.7). For generality let 
uE be a function of xl, x 2 , .  . . , x,, where the xi stand for 4, & .  . . . 
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Expanding (+E in a Taylor series around the initial contact time to, leads to 

(2.26) 

where At = t - io. 
Since at the initial contact time (point A, figure 2) the engine is in an equilibrium 

state, one has x1 = x 2  = . . . = x,  = 0 and aE(t0) = 0. Moreover, since by virtue of the 
second principle uE is positive definite, it follows that? 

~ I , , = o .  

Thus (2.26) reduces to 

The Taylor expansion of the integrand in the left-hand side of (2.22) is 

s - 9 . n  J = - = J s ( r o ) + -  e 

(2.27) 

(2.28) 

where Js  ( to) = 0. 
Substituting (2.27) and (2.28) into the right- and left-hand sides of (2.22) respec- 

tively and performing the time integration shows that the condition (2.22) is valid for a 
time interval At, of such magnitude that third- and higher-order terms in At, can be 
neglected compared to the second-order term. 

3. Proof of the existence of non-equilibrium entropy for an elastic body 

An elastic body is defined by the requirement that the stress tensor depends on the 
strain tensor and internal energy or temperature. 

Consider an elastic body which is heated and undergoes large deformations. The 
latter are described by 

x = x(X, t )  (3.1) 
where x is the position at time t of a particle which, in some reference configuration, was 
located at position X. This reference state is supposed to be one that is externally 
unstressed and at uniform temperature eo. 

The deformation is conveniently described by the deformation gradient F defined by 

We shall adopt the spatial description. Following Pearson (1959) we introduce as 
a measure for the deformation the following Eulerian strain tensor: 

t For example, when (+E is a quadratic function of two variables x1 and x2 then ( + E = u x ~ + b x ~ + c x l x z  
(a >O, b >O, b2-4ac>0)  whence, ~ E = 2 ~ ] ~ ] + 2 b x z x ~ + c ( x ] x z + x ] i z )  = 0 for t =  to. 
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a tilde denotes the transposed tensor while the superscript - 1 indicates the inverse of a 
transformation. The summation convention over repeated indices applies throughout 
this section. 

The material time derivative of E is related to the deformation rate tensor, d, by 

ZF 1 . i . P = -d, (3.4) 

where a superscript dot denotes the material time derivative. 
The power per unit mass due to the mechanical action of body and surface forces is 

U is the Cauchy stress tensor and p the density, the colon stands for the double scalar 
product. 

Using (3.4), the relation (3.5) can be written as 

w =t:€+X.r (3.6) 

where 

is an Eulerian stress tensor. 
Making use of (3.6), the first law of thermodynamics may be written, locally, as 

pu = -V q + p t : & + pr (3.8) 

where q is the heat flux vector, V . q its divergence, U the internal energy per unit mass 
and r the heat supply by radiation per unit mass. 

For an elastic body the following constitutive relation exists 

t = t (u ,  Q). (3.9) 

To prove the integrability of (3.8) when (3.9) is valid we make use of the following 
axiom proposed by Caratheodory (1909). 

Axiom 
Arbitrarily near to any prescribed initial state there exist states which cannot be reached 
from the initial state by means of an adiabatic process, reversible or irreversible. 

The truth of this statement is trivial. Indeed if two adiabatic lines could intersect one 
could construct a closed cycle with one single isothermal line. 

A reversible or irreversible engine working through this cycle would absorb heat at 
the temperature of the isotherm and convert it totally into work. But such a device 
violates the Kelvin-Planck statement of the second law. 

Moreover, one has the following theorem (Sneddon 1957): If a Pfaffian differential 
form 

(3.10) 

has the property that in every arbitrarily close neighbourhood of a given point 
Go(xY, . . . , x:) there exists points G(xl, . . . , x,) which are inaccessible from Go along 
curves for which by = 0, the corresponding Pfaffian differential equation by = 0 is 
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integrable; a line drawn through the differential symbol indicates that it is not an exact 
differential. 

Hence an integrating factor A(xl,. . . , x,) and a primitive function +(xl, .  . . , x, )  
exist such that 

(3.11) 

It is well known that A and are not unique; generally one can find an infinite 
number of combinations of integrating factors and primitives. For if 0 is an arbitrary 
function of 4, @=0(4), then multiplication of (3.11) by a0/a4 shows that the 
associated primitive of the integrating factor @ is (l/A)@/84. 

Setting 

pci = - Q. q f p t ,  (3.12) 

the relation (3.8) can be written in incremental form as 

bq = du - t (u ,  E) : de  (3.13) 

where dq is the increment of heat supplied to a unit mass in the time dt during the 
irreversible process. 

The relation (3.13) is a Pfaffian form which, according to Caratheodory’s axiom, is 
integrable. Therefore an integrating factor A(u, E) and a primitive + ( U ,  e) exist such 
that 

1 
A 

dq5=-(du-t:dE). (3.14) 

It follows that an entropy potential which in general may be a function of the 
potential 4, can be defined. 

We shall prove that we may select an integrating factor which is identical to the 
non-equilibrium temperature defined by (2.23). Let s be an arbitrary function of 4. 
From s = s(4), it follows readily, by multiplying (3.14) by ds/d4 that 

1 1 ds -=-- 
77 A d 4  

is also an integrating factor. Thus 

(3.15) 

1 
77 

ds=-(du- t :de) .  (3.16) 

It follows from (3.16) that 

(3.17) 

Comparing this result with (2.25) shows that 77 is the non-equilibrium temperature 8. 
The entropy introduced above is thereby also unique within an arbitrary constant. 

Hence we have proved the existence of the fundamental relation 

s = s(u, E)  (3.18) 
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from which the equations of state follow by differentiation: 

(3.19) 

Once 8 and t are known as functions of U and E ,  s can, within an arbitrary constant, 
be determined by integration of (3.16). 
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